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Abstract 
The significance of the thermodynamic potential and extensive variables is outlined 
and leads to identification of the role and use of enthalpy in a multi-phase material 
comprising solid particles, liquid and gas.  This is presented in terms of triaxial stress 
conditions.  Enthalpy considerations are then used to develop equations that describe 
the equilibrium stress regime in an unsaturated soil and demonstrate the dependence 
on the relative volumes of the phases.  The analysis supports and expands on 
previously published work. 
 
Introduction 
Bishop (1959) proposed a single-stress variable s¢B as the controlling stress in 
unsaturated soils.  This incorporates a parameter c to account for the effect of matric 
suction (ua-uw) on mechanical behaviour in unsaturated soil.  

 
[1]        
where, s is total stress 

ua is pore air pressure 
uw is pore water pressure 
c is assumed to be a function of degree of saturation.   

 
This may alternatively be written in terms of mean stress under ‘triaxial’ test 
conditions as, 

 
[2] p¢B = (p – ua) + c(ua-uw) 
where, p is mean total stress = (s1+2s3)/3 

p¢B is mean Bishop’s stress = (s¢1B+2s¢3B)/3 
s1 and s3 are the total axial and lateral principal stresses respectively    
s¢1B and s¢3B are the Bishop axial and lateral stresses respectively    

  
However, it is widely appreciated that experimental evidence suggests that the use of 
a single stress variable such as s¢B is incapable of adequately describing the stress 
regime in an unsaturated soil (e.g. Jennings and Burland 1962; Morgenstern 1979).  
As a result, researchers have turned to ‘independent stress state variables’ to describe 
the strength and volume change characteristics of unsaturated soils  (e.g. Matyas and 
Radhakrishna 1968; Fredlund and Morgenstern 1977).  This approach suggests that 
any two of the three stress state variables (s-ua), (s-uw) and (ua-uw) may be used in 
describing the mechanical behaviour of an unsaturated soil.  
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Nevertheless, theoretical analyses yield equations similar in form to Equations [1] 
and [2].  Houlsby (1997) examined the power input into unsaturated soils and 
developed a relationship where c is replaced with the degree of saturation Sr.   Li 
(2003) presented a microstructural analysis and concluded that there is a quasi-
effective stress for unsaturated soils with c replaced by a tensor term describing the 
distribution of pore pressures.  Murray (2002) derived an equation to describe the 
general equilibrium stress conditions in unsaturated soils that may be written as,   
 
[3] p¢c = (p – ua) + (ua-uw) vw/v 
 
where, p¢c  is defined as the mean coupling stress 

v is the specific volume given by (1+e) 
vw is the specific water volume given by (1+e Sr) 
e is the void ratio 

 
The equation was developed from considerations of enthalpy and although in a form 
similar to Bishop’s Equation [2] should not be confused with it as the volumetric 
terms indicate a dual stress regime not a single stress as controlling the behaviour of 
unsaturated soils.  The equation has proved insightful in analysing published 
experimental data on unsaturated soils under equilibrium conditions (Murray, 2002; 
Murray et al, 2002; Murray and Sivakumar, 2004).  An alternative derivation of 
Equation [3] is presented.  First the significance of the thermodynamic extensive and 
intensive variables is discussed. 
 
Thermodynamic extensive and intensive variables 
The thermodynamic concepts of internal energy and entropy may without 
modification be applied to soils. Under equilibrium conditions assuming no chemical 
potential, thus no osmotic suction, and ignoring the gravitational field, the internal 
energy U for an isotropically loaded specimen of volume V may be written as,  
 
[4] U = TS - pV  
 
where, T is the absolute temperature of the specimen 
 S is the entropy of the specimen 
 p is the applied pressure  
  
Under conditions of constant T and p, for any subsequent change in the variables of 
state S and V, the internal energy given by Equation [1] represents the Euler 
thermodynamic potential (Sposito, 1981).  In applying this to soils in a triaxial cell no 
distinction is made as to the degree of saturation or composition of the specimen.  
Thus only the applied total stresses are considered and Equation [4] does not consider 
internal stresses or fluid pressures in the soil specimen and says nothing about the 
specimen’s history.  Essentially an undrained test under closed conditions with no 
matter exchange with the triaxial measuring or pressure system is allowed.  
 



For anisotropic triaxial loading of a cylindrical soil specimen of height h and radius r 
the change in internal energy for reversible, infinitesimal (virtual) changes in thermal 
and mechanical energy as a result of perturbations dS and dV respectively, is given 
by,  
 
[5] dU = TdS - pm dV - qm 2 V (dh – dr)  

                                      3        h      r      
where, pm = (s1 + 2s3)/3  

qm = (s1 - s3).   
dV is the volume change of the specimen 
dh is the axial compression of the soil specimen 
dr is the radial compression of the specimen  

 
The thermodynamic potential U for anisotropic loading conditions may be 
determined from Equation [5] and is given by, 
 
[6]   U = TS – pm V    
 
Equation [6] is in the same form as the Euler Equation [4] for isotropic loading but pm 
represents the mean stress.  There is no separate term for the deviator stress qm as on 
integration of Equation [5] the conjugate deviator strain term reduces to zero.  The 
fact that a separate term for qm does not appear in Equation [5] indicates that at 
equilibrium it is appropriate to treat pm and qm independently.  For simplicity the 
suffix ‘m’ will be dispensed with in the following.  
 
It is important to distinguish between the extensive variables and intensive variables 
used in the analysis.  The extensive variables are dependent on the amount of matter 
in the soil, whereas the values of the intensive variables can vary from point to point.  
The distinction between the variables is significant as the extensive variables are 
‘additive’.  The extensive variables include U, V and S, and, for example, the total 
volume of the phases in a soil is the sum of the volumes of the individual phases.  
The intensive variables comprise p and T and it is inappropriate to sum the values for 
the individual phases.  However, the product of an extensive variable and an intensive 
variable such as pV is also an extensive variable and is additive as is the influence of 
the individual stresses making up the product.  The terms in the thermodynamic 
potential Equation [6] are thus extensive variables as is the thermodynamic potential 
itself.  The enthalpy defined as H = pV+U can thus also be seen to be an extensive 
variable (Callen, 1965; Sposito, 1981). 
 
Role of Enthalpy 
Murray (2002) developed an analysis using enthalpy that allows an equation to be 
formulated describing the equilibrium stress regime in unsaturated soils and the 
following expands on the major considerations of the analysis. First however the 
principles on which the analysis depends are outlined.  
 
 



Principle 1 - The total enthalpy H of a multi-phase material is the sum of the 
enthalpies of the individual phases and the interactions between the phases Hi. 
As enthalpy is an extensive variable, for a material comprising a number of phases, 
the total enthalpy comprises the summed enthalpies of the phases and their 
interactions.  This also holds true for unsaturated soils.  The interactions considered 
comprise: water vapour in air; dissolved air in water; the contractile skin between 
water and air; adsorbed water on the soil particles; and soil particle interactions.  
While in most cases the product pV may be used within the enthalpy equation for the 
phase or interaction, it is important to note that for the contractile skin it is necessary 
to replace this with the product of the surface tension and the area of the film. 
 
Interactions may be miscible or immiscible.  A miscible interaction such as water 
vapour in air may be taken as obeying Dalton’s divisional law of partial pressures 
whereas an immiscible interaction, such as the adsorbed water on soil particles, may 
be treated as having its own pressure acting through its own volume.  Let pi be the 
pressure or spherical stress component arising from a phase or interaction between 
phases.  For those miscible interactions obeying Dalton’s divisional law, the partial 
pressures pp may all be taken to act through the total volume of the phase.  
Accordingly the total pressure pi for a miscible interaction is given by pi = Spp.  Thus 
the total pressure p for a multi-phase material with both immiscible and miscible 
interactions, assuming a surface encompassing the soil specimen that passes through 
a representative volume of homogeneous soil, is the sum of the pressures of the 
phases and their interactions factored by the relative volumes Vi/V giving p = 
SpiVi/V.  Further, since U is an extensive variable the total U may be equated to the 
sum of the internal energies of the phases and their interactions (U=SUi) and from the 
definition of enthalpy,   

 
[7] H = SHi  
 
This holds true for isotropic and anisotropic loading as the influence of the individual 
stresses are additive.  Accordingly, the total enthalpy of an unsaturated soil specimen 
may be determined from summation of the enthalpies of the individual phases and 
their interactions.    

 
Principle 2 - The sum of the enthalpies of the individual phases in isolation equals 
the enthalpy of the combined phases if no work is done in combining the phases.   
It is necessary to consider a system where there is no mass loss or heat exchange with 
the surroundings.  This idealised system is necessary and appropriate as no actual 
process of combining the phases is undertaken but only a theoretical redistribution of 
the phases within a given volume is considered.  The general work equation may be 
written as,   
 
[8] dU = dQ + dW = TdS – pdV 
where, dQ = TdS is the change in heat of the soil 

dW = pdV is the work done on the soil 



This assumes that the combined phases experience isotropic loading conditions and 
as dQ = 0 this leads to dU = dW = -pdV.    If the process is one where there is no 
volume change as the phases are combined, then no net work is done and dW = dU = 
dH = 0.  Thus in combining incompressible phases, equilibrium conditions require 
that,  
 
[9] dH = SdHi = 0 
 
where, Hi represents an individual phase 
 
Equation [9] states that there is no change in total enthalpy, thus the sum of the 
enthalpies of the individual phases in isolation equates to the sum of the enthalpies of 
the combined phases.  As water and soil particles are usually considered 
incompressible, Equation [9] is considered to apply to the idealised unsaturated soil 
structure comprising ‘saturated packets’ surrounded by air voids.  The saturated 
packets are created as a result of the difference between the air and water pressure 
and thus arise from isotropic loading conditions.   
 
Analysis using Enthalpy 
The foregoing has set the background to the analysis that follows which first 
considers a simple fluid, then a gaseous fluid before extending the arguments to an 
unsaturated soil comprising the three phases of solid particles, liquid and gas. 
 
Analysis of an element of de-aired water: Figure 1 shows a small element of de-
aired water of volume V=Vw in equilibrium under an isotropic pressure p.  The 
weight of the element is taken as negligible. The external pressure is balanced by the 
internal water pressure uw.  To an external observer the enthalpy of the element H = 
pV + U.  To an internal observer the enthalpy would be H = uwVw+U.  Internal to the 
element refers to the recognition that there is a water pressure resisting the applied 
pressure p.  The simple conclusion is that p = uw irrespective of the value of U. 

 
Figure 1: Element of de-aired water 

 
Analysis of an element of water with air bubbles: To an external observer the 
enthalpy of the element depicted in Figure 2 is again given by H = pV+U.   However, 
internal to the system, an observer would give H=uwVw+uaVa+T+D+W+U where U is 
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The cube shown represents a  small element of deaired 
water of volume V=Vw in equilibrium under an isotropic 
pressure p.  The weight of the element is taken as 
negligible. The external pressure is balanced by the 
internal water pressure uw.  To an external observer the 
enthalpy of the element would be H=pV+U.  To an 
internal observer the enthalpy would be H=uwVw+U.
Internal to the element does not here refer to internal 
energy given by U but to the recognition that there is 
a water pressure resisting the applied pressure p.  
It is necessary to set datum levels.  The datum for p 
and uw may as normal be taken as atmospheric 
pressure.  The current internal energy of the water 
may be designated the datum level giving H=pV.  
Nevertheless, whether U=0 or not, pV=uwVw and in the 
following U is retained for completeness.
 



the sum of the internal energies associated with the air and water phases.  T 
represents the enthalpy associated with the surface tension, D represents the enthalpy 
associated with the dissolved air and W represents the enthalpy associated with the 
water vapour in the air phase.   
 

 
Figure 2: Element of water with air bubbles 

 
The influences of the dissolved air and water vapor are small and may be ignored but 
are included for completeness.  The influence of the surface tension T may also be 
small but plays a far more significant role as the relative volume of air to water 
increases.  Bearing this in mind, under equilibrium conditions, 
 
[10]  pV = uwVw + uaVa + T + D + W 
 

Analysis of an element of water with air and interacting soil particles 
To an external observer the enthalpy is again given by H = pV+U.  Internal to the 
system however, H = uwVw+uaVa+usVs+p'cV+T+D+A+U.  The 'effective' stress p'c is 
the overall effect in terms of continuum mechanics of the inter-particle forces.  There 
is a jump in philosophy from enthalpy to continuum mechanics but a necessary one as 
the actual interaction stresses between particles are indeterminate.  p'c acts through 
the total volume V.  Thus,  
 
[11] pV = uwVw+uaVa+usVs+p'cV+T+D+A 
 
The analysis of Murray (2002) shows that D and A can be neglected as they represent 
only small components of enthalpy, giving,  
 
[12] p'c = (p-ua)+a(ua-uw)(nw+ns) = (p-ua)+a(ua-uw)vw/v    
    
where, nw is the volume of water per unit volume of soil 

ns is the volume of solids per unit volume of soil 
vw/v=(Vw+Vs)/V is the volume of saturated ‘packets’ per unit volume of soil. 
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Figure 3: Element of water with air bubbles and interacting soil particles 
 
Murray (2002) also shows that the term a is given by, 
 
[13] a = 1-b-(a-1)     ns         uw        
                        (nw+ns) (ua-uw) 
 
The dimensionless number ‘a’ relates to the pressure in the soil particles and the 
dimensionless parameter ‘b’ relates to the influence of the contractile skin and the 
size and shape of the saturated packets.   
 
Analysis using the visual idealisation of saturated packets assuming the water phase 
and all soil particles are contained within the packets gives a further equation for a, 
Equation [14] (Murray, 2002).  The idealisation allows a visualisation of the 
mathematics involved but should not be taken as restricting the use of the equations 
developed to a limited range of soil suctions and degrees of saturation.   The only 
stipulations in the analysis undertaken is that the soil particles and water are 
intrinsically linked either by water surrounding the particles or by water bridges at 
points of particle contact, and that at equilibrium the suction is everywhere the same.    
It is recognised that the idealisation may not be perceived as representing the 
conditions particularly near the extremes of either a near-saturated soil or a very dry 
soil, and particularly where the soil includes or comprises coarse particles such as 
sand.  However, the equations developed are thought to apply to a wide range of 
conditions and soils, though only further experimental evidence will fully justify the 
range of their usage.  Equation [14] is based on Principle 2 developed in the 
foregoing.   
 
[14] a = 1 + 5(ua-u*w) nw         
   2(ua-uw)(nw+ns)  
 
where, (ua-u*w) is negative being the difference between the external air pressure and 
the water pressure inside a spherical bubble of water with the same volume as that of 
the water within a saturated packet. 

 
For a dry soil nw » 0 and Equation [14] gives a » 1.  For a saturated or near-saturated 
soil, if Terzaghi’s effective stress equation applies, in accordance with Equation [13] 
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(nw+ns) =1 and again a = 1.  Between these extremes a is £ 1.  However, comparison 
with the experimental evidence of Wheeler and Sivakumar (1995) suggests that the 
equality holds very closely true at intermediate degrees of saturation.  Published 
experimental evidence for a range of materials also suggests the applicability of the 
above with a=1.  Thus Equation [12] becomes,  
 
[15] p'c=(p-ua) +(ua-uw)vw/v  
 
As discussed previously, on the basis that enthalpy is an extensive variable, the 
influence of the individual stresses is additive and from Equation [15] it is possible to 
write the general stress tensor equation for unsaturated soils under equilibrium 
conditions.  
 
[16] s'c,ij = (sij-uadij) +(ua-uw)dijvw/v  
 where, s¢c,ij is the ‘coupling stress’ tensor 
 sij is the total stress tensor 

dij  is the Kronecker delta 
 
Conclusions 
The significance of enthalpy as a thermodynamic extensive variable has been 
discussed and has been used to determine the stress regime in unsaturated soils 
comprising the interacting phases of solid particles, water and air. 
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